The Differences in Covalent Crystals & Molecular Crystals

104 37

Covalent Bonding


Covalent crystals exhibit covalent bonding; the principle that each atom on the lattice is covalently bonded to every other atom. Covalent bonding means the atoms have a strong attraction toward one another and are held in place by that attraction. Network solids means the atoms form a network with each atom connected to four other atoms. This bonding in effect creates one large molecule that is tightly packed together. This characteristic defines covalent crystals and makes them structurally different from molecular crystals.

Molecular Bonding


Molecular crystals contain either atoms or molecules, depending upon the type of crystal, at each lattice site. They do not have covalent bonding; the attraction is weak between the atoms or molecules. No chemical bonds exist as in covalent crystals; electrostatic forces between the atoms or molecules hold the molecular crystal together. This difference causes molecular crystals to be loosely held together and easily pulled apart.

Examples


Examples of covalent crystals include diamonds, quartz and silicon carbide. All of these covalent crystals contain atoms that are tightly packed and difficult to separate. Their structure varies widely from the atoms in molecular crystals such as water and carbon dioxide which are easily separated.

Melting Point


The differences in structure between covalent crystals and molecular crystals cause the melting points of each type of crystal to differ. Covalent crystals have high melting points while molecular crystals have low melting points.
Subscribe to our newsletter
Sign up here to get the latest news, updates and special offers delivered directly to your inbox.
You can unsubscribe at any time

Leave A Reply

Your email address will not be published.

"Society & Culture & Entertainment" MOST POPULAR