Wind Turbines: A Different Breed of Noise?

109 43
Wind Turbines: A Different Breed of Noise?

Environmental Noise and Health

Researchers have been studying the impacts of environmental noise on human health since at least 1930. Varying degrees of evidence exist for a wide range of nonauditory health effects potentially stemming from noise exposures, including cardiovascular disease, hypertension, stroke, diabetes, sleep disturbance, endocrine effects, minor psychiatric disorders, and impaired cognitive development.

Yet a March 2013 report by ENNAH, the European Network on Noise and Health, identified 12 areas in which the science of nonauditory health effects of noise still lacks sufficient evidence. These include the extent to which air pollution and other coexposures may contribute to health effects identified in urban noise studies, the comparative health effects of short- and long-term noise exposures, and the relationship between individual health outcomes and noise sensitivity. "Noise sensitivity" has been defined multiple ways but generally refers to an individual's increased likelihood of perceiving noises as annoying—i.e., the person is both more attuned to and more bothered by noise.

Although investigators may not know the exact nature of the relationship between noise and health impacts, or why noise affects some people differently than others, the evidence to date suggests that environmental noise pollution can have serious implications for public health. After air pollution, traffic noise is the second-largest environmental factor affecting human health in the European Union and Norway, according to a 2011 report by the World Health Organization.

The authors of the WHO report estimate that each year, western Europeans lose 1.0–1.6 million disability-adjusted life-years (DALYs) due to traffic noise, a figure thought to be conservative despite accounting for impacts on cardiovascular disease, cognitive impairment in children, sleep disturbance, tinnitus, and annoyance. Sleep disturbance was determined to be responsible for the largest independent share of DALYs lost (903,000), and annoyance (654,000) the next-largest share.

Based on its standing definition of health as "a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity," the WHO concludes that noise-induced annoyance "may be considered an adverse effect on health." High levels of annoyance have also been shown to lead to stress responses and sleep loss, including attendant symptoms such as headache, gastrointestinal upset, anxiety, fatigue, and hypertension.

Much of what scientists can conclude today about the health effects of noise in general draws upon studies of transportation noise in urban areas conducted over the past four decades. Among the first to suggest a link between noise and learning impairment was a 1975 study by environmental psychologist Arline Bronzaft. In a New York City elementary school adjacent to an elevated train track, Bronzaft compared the reading scores of children in classrooms facing the tracks to those of children in classrooms on the other side of the building. She discovered that children on the noisy side were nearly one year behind their peers in reading. After two years, once noise-abatement measures had been completed—and other classroom variables held constant—Bronzaft returned to the school and found reading scores on both sides of the building to be at the same grade level.

Today, notwithstanding Bronzaft's groundbreaking early study and New York City's ongoing efforts to mitigate noise pollution, much of the field's cutting-edge research originates outside the United States, where there is more funding and interest surrounding the nonauditory health effects of environmental noise.

For instance, from 2002 to 2006 a landmark study dubbed HYENA (Hypertension and Exposure to Noise near Airports) assessed the relationship between noise from aircraft and road traffic near airports and its implications for hypertension. Researchers measured blood pressure and collected a range of health, socioeconomic, and lifestyle metrics via questionnaire from 4,861 individuals between the ages of 45 and 70. These participants had lived near one of six major European airports for at least five years. The study revealed clear relationships between risk of hypertension and both nighttime aircraft activity and average daily road noise, after adjusting for major confounders including age, sex, body mass index, alcohol intake, and physical activity.

Subscribe to our newsletter
Sign up here to get the latest news, updates and special offers delivered directly to your inbox.
You can unsubscribe at any time

Leave A Reply

Your email address will not be published.